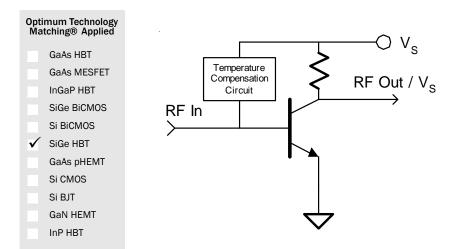

SGL0263Z

rfmd.com


1400 MHz to 2500 MHz SILICON GERMANIUM CASCADABLE LOW NOISE AMPLIFIER

Product Description

The SGL0263Z is a high performance SiGe HBT MMIC low noise amplifier featuring 1 micron emitters with F_T up to 50 GHz. This device has an internal temperature compensation circuit permitting operation directly from supply voltages as low as 2.5V. The SGL0263Z has been characterized at V_D =3V for low power and 4V for medium power applications. Only two DC-blocking capacitors, 2 input matching components, a bias resistor, and an optional RF choke are required for operation from 1400MHz to 2500MHz.

Features

- High Input/Output Intercept
- Low Noise Figure: 1.3dB typ. at 1900 MHz
- Low Power Consumption
- Single Voltage Supply Operation
- Internal Temperature Compensation

Applications

- Receivers, GPS, RFID
- Cellular, Fixed Wireless, Land Mobile

Parameter	Specification (V _S =3V)			Specification (V _S =4V)			Unit	Condition
	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
Small Signal Gain	12.1	13.4	14.7		13.8		dB	1900MHz
		12.5			12.9		dB	2100MHz
		10.8			11.3		dB	2400 MHz
Output Power at 1dB Compres- sion	3.5	5.5			11.4		dBm	1900MHz
		6.8			12.3		dBm	2100 MHz
		7.9			12.8		dBm	2400MHz
Input Third Order Intercept Point Tone Spacing=1MHz, P _{OUT} per tone=-13dBm	7.5	9.5			15.1		dBm	1900 MHz
		13.5			16.8		dBm	2100 MHz
		15.5			18.4		dBm	2400MHz
Noise Figure		1.3	1.7		1.9		dB	1900MHz, Z _S =50Ω
		1.5			2.1		dB	2100MHz, Z _S =50Ω
		2.0			2.8		dB	2400MHz, Z _S =50Ω
Input Return Loss	10.0	13.3			21.9		dB	1900MHz
Output Return Loss	10.0	12.9			17.4		dB	1900 MHz
Reverse Isolation		20.7			21.0		dB	1900MHz
Device Current	9.0	12.5	15.0		23.0		mA	
Thermal Resistance (Junction to Lead)		255					°C/W	

Test Conditions: 1400MHz to 2500MHz Application Circuit, T_{LEAD}=25 °C, Z_0=Z_L=50 \Omega

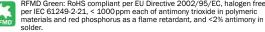
RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity¹⁰, PowerStar®, POLARIS^{IM} TOTAL RADIO^{IM} and UttimateBlue^{1M} are trademarks of RFMD. LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their resmertive owners. ©2006 RF Micro Devices Inc.

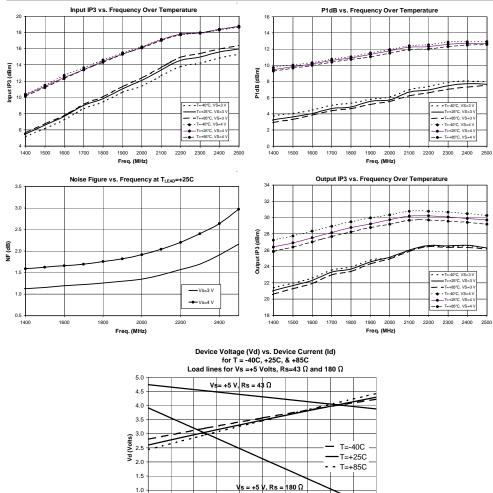
SGL0263Z

Absolute Maximum Ratings

	•	
Parameter	Rating	Unit
Max Device Current (I _D)	45	mA
Max Device Voltage (V _D)	5	V
Max RF Input Power	+10	dBm
Max Junction Temp (T _J)	+150	°C
Operating Temp Range (T _L)	-40 to +85	°C
Max Storage Temp	+150	°C
ESD	1A	Class
MSL	1	

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

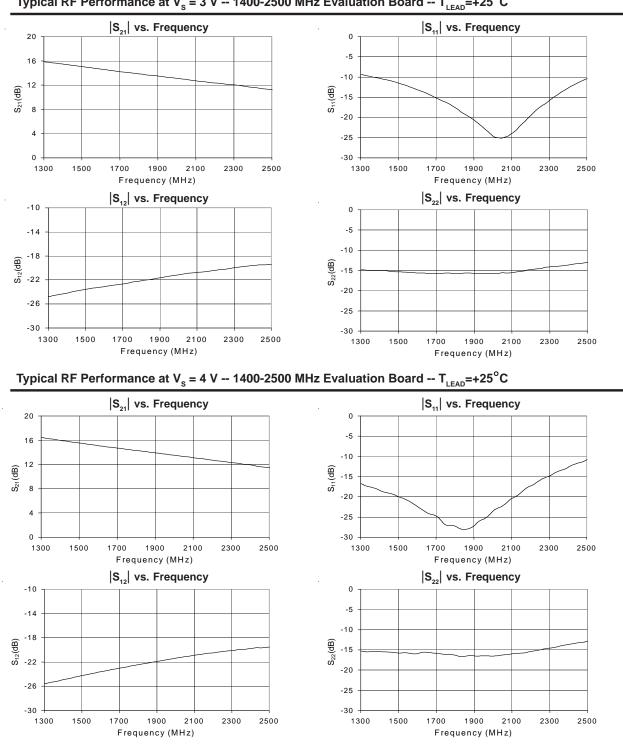

 $I_D V_D < (T_J - T_L) / R_{TH}$, j-l



Caution! ESD sensitive device.

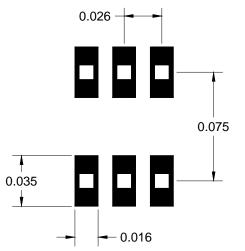
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions in substantiation of the device and the second se tions is not implied.

tions is not implied. The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended appli-cation circuitry and specifications at any time without prior notice. RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free Per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.


Typical RF Performance Over Lead Temperature at 3 V and 4 V -- 1400-2500 MHz Evaluation Board

ld (mA)

0.5 0.0 6 8 10 12 14 16 18 20 22 24 26



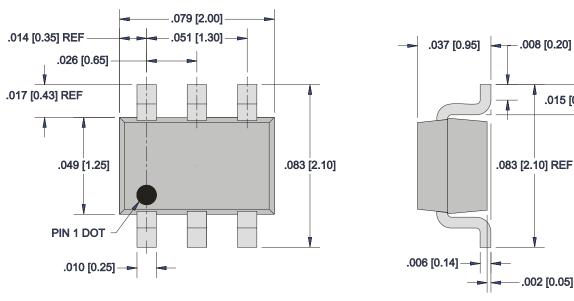
SGL0263Z

Pin	Function	Description	
1	N/C	No electrical connection. Provide an isolated (ungrounded) solder pad for mounting integrity.	
3	RF IN	RF input pin. This pin requires the use of an external DC-blocking capacitor chosen for the frequency of operation.	
4	DC BIAS	Voltage supply connection. Bypass with suitable capacitors.	
2, 5	GND	Connection to ground. Provide via holes as close to ground leads as possible to reduce ground inductance and achieve optimum RF performance.	
6	RF OUT/BIAS	RF output and voltage supply. DC voltage is present on this pin, therefore a DC-blocking capacitor is necessary for proper operation.	

Suggested Pad Layout

Notes:

1. Provide a ground pad area under device pins 2 & 5 with plated via holes to the PCB ground plane.


RFMD

rfmd.com

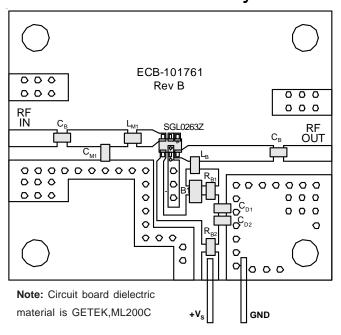
2. We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.

Package Drawing

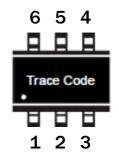
Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.



.015 [0.39] REF


1400 MHz to 2500 MHz Application Circuit

Application Circuit Element Values				
Reference Designator	Value	Manufacturer & Part No.		
L _B	27 nH	TOKO LL1608-FS27NJ		
L _{M1}	1.2 nH	TOKO LL1608-FS1R2NJ		
B1 ¹	1500 Ohms @100 MHz	FAIR-RITE 2508051527y0 Ferrite Bead		
C _B , C _{D1}	0.1 uF	SAMSUNG CL10B103KBNC		
C _{D2}	22 pF	ROHM MCH185AA220DJK		
C _{M1}	1.0 pF	ROHM MCH185A1R0CK		
R _{B1} ¹	47 Ohms	PHILLIPS 9C06031A47R0 JL HFT		
R _{B2} ²	0 Ohms	PHILLIPS 9C06031A0R00 JL HFT		
Notes:				
1 B1 and R	nrovide impr	oved K-factor, but are optional		


 B1 and R_{B1} provide improved K-factor but are optional.
R_{B2} may be introduced as a voltage dropping resistor for use with supply voltages greater than the desired device bias voltage.

Evaluation Board Layout

Alternate Marking with Trace Code Only

Ordering Information

Part Number	Description	
SGL0263Z	7" Reel with 3000 pieces	
SGL0263ZSQ	Sample Bag with 25 pieces	
SGL0263ZSR	7" Reel with 100 pieces	
SGL0263ZPCK1	1400MHz to 2500MHz PCBA with 5-piece Sample Bag	